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AN INVARIANT FINITE-DIMENSIONAL APPROXIMATION 
AND SELF-EXCITED OSCILLATORY MODES 

B.YU. SKOBELEV 

TO THE NAVIER-STOKES EQUATIONS 
OF POISEUILLE FLOW* 

A method of determining the finite-dimensional projection of the 

Navier-Stokes equations onto invariant attractive manifolds is 
developed. In particular, the projection on a two-dimensional manifold 
yields an amplitude equation analogous to that discussed by L.D. Landau 
in /l/. 

with an analytic series in powers of A. The method makes feasible the 
study of the development of non-linear quasiperiodic perturbations and 
the occurence of stochastic modes in specific hydrodynamic flows. 

It is well-known that the characteristics of the initial stage of turbulence are, in many 
cases, determined by the behaviour of non-linear perturbations in the initial flow. Beginning 
with 111, the basic subject of the study of the non-linear theory of hydrodynamic stability 
was the equation for the perturbation amplitude (0.1). A method of determining the CQ&- 

ficient b, for plane-parallel flows at low values of y, was proposed in /2/, and developed 
further in /3, 4/. 

In the case of another class of non-linear perturbations /5/ replacement of the time made 
possible the summation of the infinite series in the amplitude equation and gave an explicit 
dependence of the perturbation amplitude on time. Analysis of the domain of existence of 
these solutions /6/ has shown that they can be realized when IYI>O. 

There is a close connection between the non-linear theory of hydrodynamic stability and 
the theory of bifurcation of the Navier-Stokes equation /T-9/. The amplitudes of unstable 
periodic modes of the theory of bifurcation correspond to the threshold modes for the initial 
perturbations, and the stable periodic modes describe the limit flows formed by increasing 
perturbations. The conditions for the existence and uniqueness of periodic modes are obtained 
in the theory of bifurcations, and a method is developed for determining the amplitudes of 
selfexcited oscillations in the form of analytic series. Numerical computations based on this 
method /lO, ll/ gave a rigorous proof of the subcritical instability of Poiseuille flow. 

An asymptotic method was developed in /12/, making it possible to determine any coef- 
ficients be,, in Eq.(O.l). Numerical determination of the coefficients b, and b, has shown 
f6, 13f that in the subcritical region of Poiseuille flow a stable selfexcited oscillatory 
mode may exist side by side with the unstable mode, the increasing non-linear perturbations 
reaching a stable mode. 

1. Invartknt attractive mmifdds. We shall consider the flow of a viscous incompress- 
ible fluid in a bounded region St with the boundary dsZ. The velocity of the flow u (5, t) 
and the pressure p(x,t) are determined by the Navier-Stokes equations 

hiat f (v.V)v = -VP + vAv + f, '7.v = 0 (I.11 

We shall assume that stationary solutions (v,, Pa) of system (1.1) exists under the given 
boundary conditions, and we shall seek solutions of the form 

n (x, t) = u!lW -t u 6% t), P f% t) = PO (x) + Q @, t) 

We introduce the following Hilbert spaces: 

H ~= {U "": IL, @)I$ v.u = 0, U.IL lap = O} 

K = {u E [W,l (Q)ls; V-U = 0, u.n lap = 0) 

T = {u Cz [W*Z (Q)P; v.u = 0, u (@Q = 0) 

343 



344 

where Wlrn(Q) are Sobolev spaces. Then (see e.g. /14/l the problem of determining (u, y) 
will be reduced to a differential equation with closed unbounded operators in the Hilbert 
space H 

d&t = -L,u + N (u; v) (1.2) 
f&,26 = -II (v&J - u,.ou - U.VU,), N (u) = -nu.Oa) 

where L, is a linear operator with the domain of definition T, II is an orthogonal operator 
in H in [L, @)I". The non-linear operator N acts on T in K, and in the present case it is 
independent of the parameter v. 

Let us consider the general case of Eq.(1.2) in some Hilbert space. We shall assume 
that the operators L,,N satisfy the following conditions: 

1". N (0; v) = N,, (0; v) = 0, v E V C R”‘. 
2". The domain of definition D(L) of the operator L, is independent of v. 
3". The eigenvalues L, lie within the sector I arg (5 + a,) I Q f3 < n/2, av > 0, and the 

following estimate holds for the resofvent R,(c) of the operator (--t%J: 

II R, (5) il = II (L, +- W1 II <-<; f&,il 5 - a, I, I arg (5 - 4 I < n - 0 - 
E, vc > 0 

From condition 3" it follows that the operator (--LY) is a generating operator of an 
analytic semigroup /15/. Moreover, there exists a fractional power of the operator (--LV, 
--e-J: (--L, - e,Jax, 0 < cc < 1, D [(--L, - a#1 3 D (Lv). 

Let us introduce the norms 

Then the sets D(L) and D[(-L, - a,)al will become Banach spaces D and D, respectively. 
4". The operator N(u;v) has a domain of definition independent of v, and represents a 

mapping of D onto D, at some a. The mapping has a derivative N,(u;v), which satisfies 
the Lipshits condition. 

The spectrum a(u)- of the operator (-L,) 
oz (~).~k (v) Cl a2 (v) = 0I; 

admits of the separation a(v) = $(Y) U 
where o1 (vf is the bounded part of the spectrum (n,(v) lies within 

a closed curve). 
60. The following inequalities exist: 

where 6,, 6, are constants. 
All conditions Y-6" hold for the Navier-Stokes equations, and a < If,. 
We shall study the classical solutions of the initial problem for Eq.(1.2) 

u (0) = uc, E D (L) (1.3) 
u E C” (0, Co; D (Ll) n C’ (0, css; H) 

According to condition 5" there exists a projection operator P,, such that the space H 
can be represented in the form of a direct sum of orthogonal subspaces 

H = P,H ‘:$ (I - Py) N 

The operator (-Ll)= -P,L, exists in the subspace P,N, is bounded, and its spectrum 
is equal to cl (v). The spectrum of the unbounded operator (-L,) ==- (I - P,)L, is equal 
to a, (v). Eq.fl.21 is equivalent to the following system of equations: 

dyldt = --L,y i_ N, (y + z; Y), dzidt = -L,z -t N, (y + z; v) (l.4) 

u = y + z, y = P,,u, z = (I - P,) u; N, = P,N, N, = (I - 

Pv) iv 

We shall call the graph of the function z = .Z (y)(.M = {y, 2 (y)}) the locally invariant 
manifold (LIM) X'lIc D of Eq.il.2) such, that 
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24 (4 = Y (4 -t- z (Y (a 0 < t < 43 

provided that u (0) = Y (0) -!- Z (Y (o)t, and /I~)llr c P, 0 C t < to (p is a constant). 

TheoTern 1. Let conditions lo-6" hold. Then Eq.(1.2) has the following LIM: 

M = {(y, 2); z = .z (Y)v z (0) == 01 

The function Z(y) is defined in the sphere jl y//r< p and satisfies the Lipschitz con- 
dition and II 2 (y)\\r C P, 

We obtain positive quantities b,,b,, such that the fallowing limit holds: 

Any global solution of problem (1.2), (1.3) in which 

I1 P,u (t)//r < p, t Cz [O, c-1; II (1 - PV) m (O)ll, < P 

will be attracted by the manifold #, i.e. r> 07 can be found such, that 

/I Z (Pyu (t)) - (I - P, I u (El) II1 < const II Z W - z. II1 exp (-4 
t 3 5, y. = P,.u (O), z. -= (1 - P,) u (0) 

A scheme for constructing the proof is described below* - (*For the complete proof see: 
Skobelev R.Yu. Analytic projection of non-linear evolutionary equations onto finite-dimensional 
invariant manifolds. Preprint No.22-86. Novosibirsk, Inst. Theor. Applied Mechanics, Siberian 
Branch, Academy of Sciences of the USSR, 1986.) 

We carw out the change of variable and operator y-py,z- pi (p>Q and IV -..v, in Eqs. 

(1.4), where- 

x (b4 is a normalizing function in PvD: x(y) = Y, with II Yll, < 1 

I1 x (Y) lit c k,, ii a Lv,f - x be) l/t 6: k II II - % 1 
We shall call the integral manifold of transformed system (1.4) a set in the product IO, 

00)x D consisting of integral curves of this system /16/. Let us discuss the integral mani- 
folds .iZ (zo) describing by equations of the type 

z = f (1. u; zg), Ii I @, Y,i %) - f @, YZG d h 6 rl II Yl - Y, 111 

The manifold J?(z,) contains integral curves with fixed initial value e=z** When p 
and 2 = f (6 Y; zO) are given, the first equation of the transformed system will have a unique 
global solution 

Y(f) = y (G 2, YG ff, 1, r = 1% 00) 

satisfying the condition y(r) = y. The second equation of transformed system (1.4) yields the 
following integrofunctional equation for determining f (a, Y; 20) : 

The principle of compressed mappings is used to prove the existence and uniqueness of the 
solution of Eq.11.51, under the condition that the parameter p satisfies the inequality 
quoted in the theorem and z,, belongs to the sphere jjz,,b<l. In the same manner we will prove 
that IIfIh<l when t > to (%)1 and the manifolds M(G) with different a0 converge to each other 
exponentially as t-m. In the next stage we establish that all manifolds W(z,) tend to a 
unique limit manifold @, which is invariant for the transformed system (1.4). From the 
methods used in constructing the operator I? we see that for every trajectory of system (1.4) 
with AYlhcP we have a corresponding trajectory of the transformed system with II Y L < 1. 
Therefore, the presence of an invariant manifold W guarantees the existence of a locally 
invariant manifold M for Eq.(l.2). In the general case the manifold M is not unique, because 
of the arbitrariness in the choice of the normalizing transformation x (8). 

From Theorem 1 it follows that we can reduce the study of the trajectories of the 
evolutionary equation with unbounded operators (1.2) to the analysis of the trajectories of 
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an evolutionary equation with bounded operators L, and N, (y + Z(y)). If on the other hand 
the spectrum of or consists of a finite number of isolated eigenvalues, the problem will be 
reduced to the study of a finite-dimensional dynamic system. 

Other results concerning LIM are given in /17, l8l. 

2. Ana@% projection on finite-diwnsim~ invariant man<f'o&is. In order to find the 
projection of the initial evolutionary equation onto an invariant manifold (IM) in the course 
of sol 
and N. 

.ving specific problems , we shall formulate additional conditions for the operators .L 

7". The non-linear operator N(u;Y) is an analytic operator acting from DXt' into H. 
8". The vector L,u depends analytically on ve V for any zf.CzD. 
9O. The bounded part of the spectrum 51(y) consists of n pairs of simple, isolated 

eigenvalues (A,,&) 
hi @) = vi (y) + iWi (Y) (I = 1, 29 * m a, ?X), oi (Y)>O, vv E v 

IE k 1;. 0 is an integer and we have the relation kol(vO)= Oi,(V"), then Yi, CyOl P O. 

Let us denote by P(Q the projector on the characteristic space of the operator (--LA 
corresponding to a pair of eigenvalues &, %) 

I”% = (u, &)H rpi f (u, g,, vi s yj, {rpi, 4)& = 1 

where (FL is an eigenfunction of the operator (--&)r $i is an eigenfunction of the conjugate 
operator (-Ly*), (e, .)a is a scalar product in complexification of the real space H. The 
system of Eqs.(1.4) will now take the form 

Let us introduce into the subspaces WH systems of polar coardinate and seek the 
solution of the system of Eqs.(2.1) in the form 

yr = 2Re (ri’ exp (i@i) 9:) = 2Re (ri exp fie,) vi) -+ ITi (rl, _ I ., r,, Q,, . I .I (2.2) 

en), z = 2 fr,. . . -, Tilt B,, . . .f 8,) 

where z, Yi, are 2n-periodic functions of the variables 8,,...,8,. We write 
&,I& = (yi -t- b(s) rir d0,idt = Oi -i- di), I -; 1, 2, . . ,, I2 (2.3) 

where bci), cfil are functions depending only on the coordinates r;, Be- The dynamic system 
(2.31 will determine the behaviour of the trajectories of the initial Eq.i2.2f on the 2~ 
dimensional TM. Let us assume that 

w1 -t PI + 0, vv E v (3.4) 

Then the 
form 

Let 7 denote a fixed instant of time, and let t be the current time. We 
functions determining the relationship between two points of the trajectories 

phase trajectories of system (2.3) will be determined by a normal system of the 

the 
and 

The functions Rib, 8i" satisfy system (2.51 and represent autonomous integrals of system 
(2.3). He shall assume that the functions determining the IM depend on rg ft = 1, 2, . . ., n) 
and BE fi 71: 2, 3, f . +) nf through the integrals of motion 12.6) 

Yi = YiO (e, (t); rl(+, . . ., r,, fT), 0, (4, . . ., On (z)) (2.7) 
.z = ZJ” (0, (t); i-1 (T), . . ., Trr (4, 0, (47 . . -7 8, (T)) 



347 

Substituting (2.2) and (2.7) into Eqs.(2.1) and remembering that Yi"~ZO depends on t 
only through the coordinates 0,, and the derivatives of ri (t) and Oi (t) have the form 
(2.3), we obtain 

- + fl"' - 2 Re [(b'i' -- ic”‘) r. (t) exp t t I v4 (f)) CFil (2.8) 

(the subscript t means that bj”, cl’) are functions of ri(t) and 0i (t)). Let us put I=t 

in (2.8) and introduce the notation 

Yi" (0, (z); rl (Z), . . ., r,, (?), 0% (T), . . ., 0,, (z)) = Yi* (rlr . . ., rrL1 01. . . . 7 %I) 

z” (e, (T); rl (t), . . ., r, (4. 0* (4, . . ., % (2)) = Z* PI, . . ., r,, %, . . . %,) 

Now all functions in Eqs.(2.8) will depend on the coordinates ri, ei taken at exactly 
the same instant a. We shall write system (2.8) in the form of a single equation for the 
function 

g* = i; y,* -i_ z* 
i=1 

and we have 

ml% +f,g*=-cq- + N - 2 2 Ref(b(Q -+ ic@)r, exp fit+) qr] (2.9) 
i=l 

We shall seek the solution of (2.9) in the class of an-periodic functions of Oi, satisfy- 
ing conditions of orthogonality of the form 

(2.10) 

It is clear that the set of functions satisfying conditions (2.10) is invariant with 
respect to the operator o&aO, -!- &. Therefore the right-hand side of Eq.(2.9) must also 
satisfy conditions (2.10). This demand yields a system of equations for 

The following lemma holds (its proof is given in the paper quoted in 
note). 

the previous foot- 

Lemma 1. A number pl>O and a set v,c v, can be found such, that when If 1-C 
Pl(lfl"'l+...+r,),VETIo, problem 62.9)-(2.11) has a unique solution B*ED analytic 
in ri, v and 2n-periodic, of class C" in Oi, and IIg* iI1 = 0 (I r I% r -+ 0. Eqs.(2.ll.I deter- 

mine b(‘) (r; 8,, . . ., 0+,, Bi+l. . . ., Cl,), Cc*) (r; Bl, . . . I Cl-l, Bi+l, . . ., 0,) uniquely; these are analytic 
functions Of ri and Zn-periodic function of Oi of class C'. 

From Lemma 1 it follows that the systein of Eqs.(2.9), (2.11) and condition (2.10) deter- 
mine the projection of Eq.fl.2) on the Zn-dimensional IM and some auxiliary manifold Mz** 
defined by the function g*. We note that the functions Yi* define, in the subspace P&l, 
the change of coordinates Bi' = Oi* rj' = Cpj (r, B). 

Let us inspect the form of k-dimensional IM on which the behaviour of the trajectories 
is determined by the dynamic system (2.3), (2.11). We write 
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Then, from formulas (2.1)-(2.3) it follows that the IM are determined by the equation 

Let us fix the instant of time 
condition 

t = 7 and seek the solution of Eq.(2.12) satisfying the 

gz (r (7). 8 (r)) = g* (r (T), 0 (r)) (L.K{) 

Let us consider the difference 

W, (t) = g, (r (t). U (t)) - g* (-0, (t); r (r), U- (r)) (U- = (U,, . . ., &A) 

It is clear that ~1~fr) = 0. Eqs.(2.12) and (2.9) yield an integral equation for the 
function u;, (r (t), e (t)), t 2 T 

20, (r. 0) = s v i-p) {iv lY (R (p. 
-T 

, I‘. 0). Q ipi f, &I) -I- g* (0, (p; r, 8); (2.14) 

R c--T; r$)+ 0-(---T; r, 0)) + 0~ (R (p; I‘, 0)~ @(& r, e))] -N[Y (0, (p;F, 13); 

R (-T; r, 01, 0- (-T; i-, 8)) _1- g* ((3, (p; r: 13): R (-2’; r, e), @- (__T; 

)fI e))l - Q (R Lu; rl @I, Q (P; r, w I- Q (0, (p; T, 8); I$ (--T; r, e), 
6- (-T; I‘, 8))) dp 

Q(r, 0) = jl 2 Re[(W 7 icW)r, exP(ie,)cp,] 

Here R (s; r,e),@ (s;r,@) denote the solutions of system (2.3) with initial conditions 
R (0; r, e) = T, 8 (0; f‘, 8) = e. 

1 Using the principle of compressed mapping and Lemma 1, we can show that Eq.(2.14) has a 
unique solution, provided that conditions 1 r 1 (pz,t E [t,~ + T,l, where Pz < Pl? TCI are 
constant, hold. Differentiating Eq.(2.14) with respect to t and taking into account the fact 
that R (-2’; r, e) = r(7), 8 (--T; r, 6) = 6 (a), we obtain so,!& == 0, i.e. 0% depends on time 
only through the functions r(t),@(t). Therefore the solution o,@(1),@(t)) exists in the 
whole time interval [r,r + T*] on which lz (Q I < Pa. The function (0% (r, e) belongs to the 
class C1 and is a 2n-periodic function of Bi. Moreover, 0% (0, 0) = O and II D,, o, 0% /ii _( e (I 4 

~(lr/)+O as /rl--+O(&ews is a derivative of the function mT (r, e)). 
From what we said above it follows that Eq.(2.12) has a unique solution satisfying con- 

dition (2.13) 

g, (r (% U(t)) = g* (8, (if; r (a). @- (r)) + 0% (r (& f3 (d)) 

Let us use the autonomous integrals (2.6) and denote the parameter U,(z) by X. Then 
we can assert that the evolutionary Eq.il.2) has a one-parameter family of 
mined by the function 

g, (r, 0; x) = g* (6,; R” (x; r, 6), @,” (x; r, O), . . ., 0,” (x; r, 0)) + 
w (r. 8; X) 

go Ie*-I LT kT* 

It is clear that 

ll&,eg,lI,,<a(IrI); t:(lrl)+O, Ii-I-+0 

Therefore, for sufficiently small \r I the function Ye0 (r, 8; x) = P,g, will define the 

mutually single-valued transformation of the coordinates r +v(r,8) is the subspace P,H. 
If, in addition, we take into account that the function g, was obtained under the following 
limitations: I T I < pz, 1 R” I < PZ~ then the domain of existence of LIM will be determined by 
the inequalities (K is a certain constant) 

I r I -c p. < h o<e,--ilK, --CC(XC~ 

Thus we can formulate the following theorem (it should be noted that an analogous theorem 
cited in the paper in the previous footnote is not formulated with sufficient accuracy). 

Theorem 2. Let conditions 1"-6O hold. Then Eq.cl.2) will have, for the value YE v,C V, 
a one-parameter family of two-dimensional LIM'S 

M,,(X) = ((Y,> * * .t y,, z); ,t/i = 2Re (ri exp tie,) CPA -I- Y,F (r, 0; xl 1, 



349 

2 = zoo (r, 8; xl) (- 00 < x < m) 

The functions Y,i’(r,O; x), Z,“(r,e;~) belong to the class C' and are defined for Irl< 
po, 0 < ‘3 - x < K (PO, K are constants). 

In addition we have 

Y,i” (0, 8; X) = Dr,sYoi’ (0, 8; X) = 2,” (0, 8; x) = D,,eZ,” (0, 8; X) = 0 

The functions Y,i", Z," satisfy the conditions 

Y,i” 1+x = Yi* (r, e), Zoo Ic+~ = Z* (r, e) 

where Yi*v Z* are solutions of problem (2.19)-(2.11) depending analytically on the co- 
ordinates ri and the parameter v, and Zn-periodic functions of ei of class 0. 

The trajectories of Eq.tl.21 are defined on the manifolds MI,(x) by a unique system 
of Eqs. (2.3) where b(') (r; 61, . . ., fli+ @i+l, . . . , e,), c@) (r; ol, . ., ei-l, ei+l, . . ., 0,) are analytic 
functions of r!,while v and 2n are periodic functions of 6i of class C2. 

Any global solution u(t) of Eq.cl.2) in which 

11 PvU 0) II1 < min (pot P), t E 10, m); II (I - P,) u (O)II, < p 

will be attracted by the manifolds M,, (x). 

Coro~Zary. The manifold M,,* is locally attractive. 

Proof. Let us consider the trajectory 21 (4 of Eq.(2.2) satisfying the conditions 

II P,a (4 II < min h 64, f E [OS c=); I V - p,) u (0) L < P 

Let (tk) denote an inCreaSing sequence Of values of t:O<t,<... <tk<... We have the 
corresponding sequence of points of the trajectory (4): uk = 11 (lk). Let us denote by (r(k), O(k)) 

the coordinates of the projection ua on the limit manifold Mnn*. From relation (2.2) it 
follows that 

and the coordinates 

Let us consider 
attractive manifold, 

81”’ = arCtg b (uk, 101)~ / Re (1111, Qd~l, i = 1, 2, . . ., n 

(k) 
‘i are determined by a system of equations of the form 

r$h) + 1 tyc* cr(k), @‘k’), $‘)I)H 1 = 1 bk, $&I, i = i, 2, . . ., n 

the LIM Mg, (eik') for some value of k. Since Mp,, (f3ik)) is a locally 
it follows that for sufficiently large values of t we have 

II a (t) - 200 (r (t), 0 (t); tlik’) 111 < const.exp (-vt) 

81 (t) > ty’; z (t) = (I - PJ u (t) 

(2.15) 

where r (t), 0 (t) are the coordinates of the projection of u(t) onto the manifold Mz, (Oik)). 

From (2.15) it follows that the following inequality holds for fairly large values of k: 

1 Z (tk) - .&,O (r (tk). 8 (tk); @*‘) ,,L d const.eXp (-ytk) 

Since O1 @k) = eik), then rl (tk) = rik) and -%a (r (~4, e (tk); eik)) = 2* p(k), e(k)). Therefore 

II z (tk) - z’ (r (k), e(k)) /IL .: cunst.cxp (-~tr), k _ m 

Since o are the limit points, uI, are determined by the relation limu (t) = up as t--tm 
and any point on the closed trajectory is an o -limit point, it follows that all o -limit 
points and periodic SolUtiOnS of Eq.(1.2) from the sufficiently close neighbourhood of the 
zero will belong to the limit manifold M,,*. 

In order to determine the 
manifold MS,*, 

2n-dimensional invariant projection of Eq.(2.2) and the limit 
we shall write the functions 

in powers of ri 
g* (r, 6), b(*) (r, Cl), cm (r, 0) in the form of series 

m 

g*= ,s~.Z!agsrS, rs=rF.rr...r2, (SI =s,+ . . . +s, 
cc 

b(‘) zz x bg$S, &)= i ,.&a 
ISI= ISI=1 

(2.16) 

We substitute (2.16) into (2.91, (2.10) and (2.11) and equate the cofficients of like 
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powers of rs. This yields the following recurrence system of linear equations for gs: 

NE 2 N&J, 
,s,==a 

St=+ ,,..., s,--1 ,..I, s,,) 

The functions g,, periodic in B,, must satisfy the conditions 

and the functions b$ (B), e$ (0) are uniquely defined by the equation 

(2.17) 

(2.18) 

3. Wimensiomt invariant of the Nuvier-Stokes equations for PoiseuiZZe ftm. Let US 

consider the flow of a liquid in a plane channel. Let the x axis be directed along the 
channel and let the dimensionless laminar velocity profile have the form u = 1 - yz. When 
the perturbations are two-dimensional, it is convenient to convert from the Navier-Stokes 
equations to an equation for the stream function of the perturbation 

We shall consider solutions of Eq.(3.1) periodic in x. Then the part of Cl will be 
played by the periodicity cell 

52 = {I, y: 0 < s < 2n!a, -1 < y .< 1) 

and the stream function Y will have to satisfy the following boundary conditions: 

Y' ju=*r = aY/ay jbrzf> = 0, Y (z + 2nia, y, t) := Y f.2, y, t) (3.2) 

The eigenvalues of the corresponding linear operator (-L,,) are found from an equation 
of the form 

and boundary conditions (3.2). 
In order to construct a two-dimensional invariant projection of problem (3.1), (3.2) we 

take as U, a pair of first eigenvalues of problem (3.3), (3.2) (the ordering is carried out 
according to the magnitude of Reh). Using the representation 

tp (2, y) = exp (--iaof f (Y) (3.4) 

we obtain for the function f (Y) an equation which is the complex conjugate of the Orr- 
Sommerfeld equation 

__iu [(u - E) (d*/dy2 - a”) f - U”f] - H-’ (de/dy2 - a2)2j = 0 

i; = -y/a + o/a 
(3.5) 

(the minus sign in the exponential function in (3.4) is chosen in order to ensure that the 
quantity o is positive in accordance with condition 9*). We know that an even eigenfunction 

I (Y) corresponds to the first eigenvalue of the Orr-Sommerfeld equation; therefore it must 
satisfy the following boundary conditions: 

f (--1) = f/(--1) = f' (0) = f" (0) = 0 

In the present case the first manifold M,* is determined by the function g* (r, 01, 
depending only on two variables, r and 0. The functions b and c determining the invariant 
projection depend only on the coordinate r. It can be shown that in (2.16) 
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and 

From (2.17) we obtain the following system of recurrence equations for determining 
g,, (&i is the Kronecker delta): 

ik [(o - cd) Ak _t aU”lg,k - R-‘Ak2g,, = - 6gz (a-1 + ic+if AIf - 

ELK, -f @J,~ - ic,_l) AJ - ik 
2 

C~A~g~k - ia 
,&& 

X 

q+p=s 

I 
k,, +Ajm-f yq-- dgqt Aim 

I 

L&&~ = (~2/~y"-(k~)2)&~ 

The functions g,, must satisfy the following boundary conditions: 

g,, (--I) = &' (-') = ' 

&,' (0) = &Cm (0) = 0, if s is even, and g,, (0) = gik (0) = 0, if s is odd. 
We have the following condition of the form: 

(3.6) 

corresponding to conditions of orthogonality (2.181 6 where f* is the eigenfunction of the 
equation conjugated to (3.5). 

The coefficients &..x, G-Z are determined from the equation 

i F,lf*dy=o 
-1 

where F,, is the right-hand side of Eq.(3.6) for the function g,,. 

Solving Eqs.13.6) in succession we obtain the limit manifold N,*, and two-dimensional 
dynamic system describing the behaviour of the trajectories on the family of IM'S 

dr / dt = (y + b (r)) r, d8 t’ dt = 0 4 C @) (3.7) 

The behaviour of the perturbations as t --+m, which is determined by two critical 
trajectories of system (3.71, represents the greatest interest. Examples of such trajectories 
are the limit cycles, and periodic solutions of Eq.(3.1) correspond to them. The amplitudes 
of the limit cycles are found from the condition 

y -t_ b (r) = 0 (3.8) 

Taking into account the fact that b (4 is an even function, we introduce the notation 

P = ra, Ro = Y (R, a), B, = b,, (R, a) 

F(P; R, a) = %fo B,pn, F,v(p;R,a)== 5 3,pn 
n=o 

We solved numerically the approximate equation for the amplitudes 

FN(P; R, a) = 0 (3.9) 

for N < 5. The calculation showed that, depending on the behaviour of solutions of (3.9), 
we can single out four domains of values of the wave number: o: I, = (a: a 2 0.98}, I, = {a: 
0.92 < a < 0.98), I3 = (a: 0.9 ( a Q 0.92), I, = (a: a < 0.9). 

A typical plot of the solutions of (3.9) for 2<N,< 5 and a+?ZI,(a = 1) is shown 
in Fig.1 (R,is the linear neutral Reynold number). When p<p*(a), all approximations yield 
similar solutions which correspond to the amplitudes of the unstable, selfexcited oscillatory 
modes of flow. When p>p* (a), the pattern changes qualitatively, If, in the odd approxi- 
mations, the solution is continued without break into the region of smaller R, then in the 
even approximations a second solution appears, corresponding to a stable selfexcited oscil- 
lation. The solution merges with the first solution at some critical value of R = R, (a). 
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5 5.5 6 

Fig.1 

We note here that the stability of selfexcited oscil- 
lation with the amplitude is determined by the sign of 
the derivative aFlap Ipo (PO = To’). The selfexcited oscil- 
lation will be stable if 
dF,‘ap II,” ,> 0. 

aFlap lpo< 0, and unstable when 

When tne values of a lie in the interval I,, the 
graphs of the solutions will be analogous to those in Fig. 
1, but the even and odd approximations will be inter- 
changed. The odd approximations will have two solutions, 
and the even approximations a single solution. The region 
I, will become transitional, and we can have here two sol- 
utions of approximations of different parity. In the 
region I, the pattern will become more complicated. 

We shall use the methods of catastrophe theory /19/ 
to analyse the behaviour of the solution of Eq.(3.8) when 
P3‘P*- 

We shall consider F as a two-parameter family of 
functions I: (/a; 8, a), and inspect the set of zeros of 
this family. We shall begin from the region I,. Let ~"(a), 
/<* (a) be the values of p and R such, that when P<P' (a). 
)( > R* (cc), Eq.(3.8) will have a unique solution to which 

the solutions of Eqs.(3.9) will converge, while when P>P, the approximations FN (P; R*, a) 
will diverge. It is clear that the quantities P*,H, will yield approximate values of II* and 
H* respectively. Let us fix some value of ~,EI~. We can assume that B,, (R' (%)> %) # CJ 01 = 1, 
2, . ., )> since these conditions hold for almost every value of a. 

Let us consider the family F (P; R, a) in the following region: 0 <P <P' (a,), (X.4 E A (P) 
where A is the neighbourhood of (fi* (~~),a,), in which the coefficients B, have constant sign and 
the approximations FN(p;H,a) converge. Numerical computations have shown that for any a=II 
and R from some neighbourhood K,(a) containing &(a), the coefficients 4, B,, B.5 are positive 
and B,, Ba are negative. Therefore F(p;R,a) can be written in the form 

F = B, + y, - y2 (B, < 0, B, (R, (~4, a) = 0) 

YI(P) = 5 Bzkpik, 
k=l 

Y (PI = ( k$l I Bj, I pj”) “’ 

(K,, KS may become -);B; are positive coefficients belonging to (B,)y, and B- 
jk 

are 
x 

negative. The analytic functions Y, (P; R,a) and Y (P: R, ~4 satisfy the conditions 

y, (0; 12, a) = y (0; K, a) = 0; oy,/ap, ayiap > 0 

It can be shown that there exist P-continuations y,",y' of the functions y, and y, with 
the following conditions holding in some neighbourhood of the point (P’ (ad, R* (4, a,) : 

~YI”/~P > 0, ay”/ap > 0; 0 ,< p < ~1, pl > p* (R, a) E A (3.10) 

Let us consider the family to= B,f y10-(yo)2. By virtue of condition (3.10) there exists 
a smooth change of coordinates P+ Y”(P) and P (p; R, a) equivalent to the family 

Q, (Y”; R, 4 = B, W, a) -i- Y,” (Y”; R, 4 - (Y”)’ 

Let y, (R, a) be a solution of the equation Q (y”) = 0 and let us consider the quantity 

a@ ayi aP 
- w IIo 

= XJYO) - 2Y0, x (Yo) = ap a1/0 (Yo) 

Since x(y,)>O for all y,, it follows that for sufficiently small y, the family @ has 
simple zeros, with the corresponding simple zeros of the family FkR.4. However, when y, 
increases, the derivative a0layo\,0 may vanish and a multiple zero will appear in the family 
F (P; R, a). 

It is natural 
this aspect, i.e. 

to assume that the divergence of the solutions of Eqs.(3.9) is related to 

$$- $- (ya; R, a) - Zy, = 0 

R = R’ (a,), I/O = y* = y” (p’, R*, ao) 

(3.11) 

We can assume here that 



~(Y*;R*,+-(2-~ (Y’, R*, %) # 0 
) 
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(3.12) 

SO that the condition will hold for almost all values of c. 
We see that in some neighbourhood of the point (p*,R*,a) the family Q, will be equivalent 

to the family 

IJ = I/'- Y*, h (R, a) = 0 (y*; R, CL), tn (II, a) = 7 (I/*; R, a) 

f (0; tl, tl) = $ (0; tl, ta) = s (0; tl, tl) = 0, tl CR*, ad = b W, ao) = 0 

Using Theorem 8.6 of /19/, we can show that 'D1(u;tl,tl) represents the versa1 deformation 
of the 2-defined function 6(0, 0)u2ff(& 0, O), having a codimensionalty of 1 (the codimension- 
ality is determined in the space of all polynomials of u). Therefore, the catastrophe of the 
fold will represent the universal deformation. It follows that in the region I, the correct 
description of solutions of Eqs.(3.8) will yield the even approximations (3.9). We note that 
near the point (P., R,, co) the family F,(p;R,a) can be reduced to a form analogous to Q~, 
with f=O. 

Let us now transfer to the region I,. The signs of the coefficients B,, &, B, will change 
in the interval 0.96<a<O.98 near the critical points (P. (a). 8. (a), a). It is clear from the 
previous analysis that the character of the singularities F(p;R,a) will remain unchanged and 

only the form of the functions vi(p), Y(P) will be different. Let us consider the interval 
0.92 <a < 0.96. Here the coefficient B, changes its sign, B,,B, are negative and B,,B4 are 

positive. Let us write F (P; R, 4 in the form 

F = S, + YI (P) + B~P* - y3 (P) 

where y, is the sum of positive terms of the series F(p) and (-y3) is the sum of negative 
terms. We can now show that the set of zeros of the family F(p; R,a) has, as before, a,fold- 
type singularity. In the region I, we have S,, SZ, Bb>O and B8, B,<O. It can be shown that 
the critical points (p*(a), R* (a),a) will also be folds, and a correct description is given by 
the solutions of Eqs.(3.9) for N=3 and N = 5. 

On passing from region I, to region 11 we find that the coefficient B, changes its sign 
near the linear neutral curve (R = R, (a); B, = 01. Let us fix a value of a=a,, near to a=0.9. 
It can be shown that in some neighbourhood of the point (~*(a,,), R*(a,), aa) the family F(p, R, a) 

is equivalent to the family 'D(Y"; R, a) of the form 

Q, = 4 + 4~ (Y”) + (~1’ (~‘7)’ - (Y”)” 

where Y,’ (P), I/’ (P) is a smooth continuation of the functions 

Y, (P) r= ( ~&3:k~ik)‘i2. 
$#l 

When the values of R are close to R, (a,,)(a,#0.9), the equation Q(Y*)= o has a small sol- 
ution p z -B,/B,. Since the quantity p = ra must be positive, a solution for a0 > 0.9 will 
exist when R>R,(a,) (B, GO), and for a, <0.9 when R > R,(a,)(B, >O), i.e. at the point a = 0.9 
the subcritical bifurcation will become supercritical. 

Let us consider the quantity 

$- (YO) = (4 J$- (YO) + 2~1” (r/o) * (Yo) -3Y0.) 

where y0 is a solution of the equation @(Y")=O. We see that when a,<0.9 the family CD, 
has, apart from the critical point y*, arriving from the region I 9, another critical point 

y** s --‘laBI ( B, 1”. i Bz 

which appears when the character of bifurcation changes. The second fold of the set of zeros 
of the family F (p; R, a) corresponds to this point. 

Fig.2 shows graphically the solution of Eq.(3.9) (N = 3) for cc = 0.91,0.9, 0.895 (curves 
l-3 respectively). We see that for a< 0.9 there exist two folds which approach each other 
as cc decreases. Numerical computations showed that the folds coalesce at 
only a single solution of Eq.(3.9) exists at a(a*. 

a = a* z 0.89, and 
The corresponding analysis using the 

method of catastrophe theory confirms that the set of zeros F(p; R, a) has an assembly-type 
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singularity at the point (p*,fi*,a*). 

Fig.2 Fig.3 

Thus we have shown that two subcritical periodic solutions of Eq.(3.1) exist for aEI, !_j 
1% u I,> the unstable and the stable (in the order of increasing amplitudes), and merging at 
the fold point (p* fu),R*(a),u). This confirms the result obtained earlier by the asymptotic 
method in /6/ and by direct numerical computations in /20/. Moreover, we have established 
here that at the point at which the subcritical bifurcation becomes supercritical, we have a 
bifurcation of the generation of two periodic solutions. Rs a result, another fold appears at 
the amplitude surface of the selfexcited oscillations and three periodic solutions exist in 
the region U.g> a> 0.89, the stable, unstable and stable. The solutions merge at the assembly 
point when ct* z 0.89, H* (5 7173. 

Fig.3 shows the result of a numerical computation of the fold curve (1 depicts the neutral 
linear curve and 2 the folds curve). 
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